Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lead growth on Si(111) surfaces reconstructed by indium

Identifieur interne : 001905 ( Main/Repository ); précédent : 001904; suivant : 001906

Lead growth on Si(111) surfaces reconstructed by indium

Auteurs : RBID : Pascal:12-0136748

Descripteurs français

English descriptors

Abstract

We study the Pb growth on both √3 x √3-In and 4 x I-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 x √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 x 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 x 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0136748

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Lead growth on Si(111) surfaces reconstructed by indium</title>
<author>
<name sortKey="Vlachos, D" uniqKey="Vlachos D">D. Vlachos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Ioannina, PO Box 1186</s1>
<s2>451 10 Ioannina, Epirus</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>451 10 Ioannina, Epirus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamaratos, M" uniqKey="Kamaratos M">M. Kamaratos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Ioannina, PO Box 1186</s1>
<s2>451 10 Ioannina, Epirus</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>451 10 Ioannina, Epirus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Foulias, S D" uniqKey="Foulias S">S. D. Foulias</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Ioannina, PO Box 1186</s1>
<s2>451 10 Ioannina, Epirus</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>451 10 Ioannina, Epirus</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Binz, S" uniqKey="Binz S">S. Binz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Iowa State University and Ames Laboratory</s1>
<s2>Ames, IA 50011</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Iowa State University and Ames Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hupalo, M" uniqKey="Hupalo M">M. Hupalo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Iowa State University and Ames Laboratory</s1>
<s2>Ames, IA 50011</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Iowa State University and Ames Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tringides, M C" uniqKey="Tringides M">M. C. Tringides</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Iowa State University and Ames Laboratory</s1>
<s2>Ames, IA 50011</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Iowa State University and Ames Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0136748</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0136748 INIST</idno>
<idno type="RBID">Pascal:12-0136748</idno>
<idno type="wicri:Area/Main/Corpus">002022</idno>
<idno type="wicri:Area/Main/Repository">001905</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AES</term>
<term>Chemical bonds</term>
<term>Coverage rate</term>
<term>Crystallinity</term>
<term>Growth mechanism</term>
<term>Island structure</term>
<term>LEED</term>
<term>Lead</term>
<term>Microstructure</term>
<term>Scanning tunneling microscopy</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Soft X radiation</term>
<term>Surface electron state</term>
<term>X-ray photoelectron spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etat électronique surface</term>
<term>Mécanisme croissance</term>
<term>Microstructure</term>
<term>Structure îlot</term>
<term>Spectrométrie Auger</term>
<term>LEED</term>
<term>Rayon X mou</term>
<term>Spectre photoélectron RX</term>
<term>Microscopie tunnel balayage</term>
<term>Plomb</term>
<term>Degré recouvrement</term>
<term>Cristallinité</term>
<term>Liaison chimique</term>
<term>Silicium</term>
<term>Semiconducteur</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We study the Pb growth on both √3 x √3-In and 4 x I-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 x √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 x 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 x 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Lead growth on Si(111) surfaces reconstructed by indium</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VLACHOS (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KAMARATOS (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FOULIAS (S. D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BINZ (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HUPALO (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TRINGIDES (M. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Ioannina, PO Box 1186</s1>
<s2>451 10 Ioannina, Epirus</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Iowa State University and Ames Laboratory</s1>
<s2>Ames, IA 50011</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>095006.1-095006.9</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000508447120080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0136748</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We study the Pb growth on both √3 x √3-In and 4 x I-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 x √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 x 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 x 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etat électronique surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Surface electron state</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estado electrónico superficie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Structure îlot</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Island structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectrométrie Auger</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>AES</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>LEED</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>LEED</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Rayon X mou</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Soft X radiation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie tunnel balayage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Scanning tunneling microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Plomb</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lead</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Degré recouvrement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Coverage rate</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Grado recubrimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Liaison chimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Chemical bonds</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>107</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001905 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001905 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0136748
   |texte=   Lead growth on Si(111) surfaces reconstructed by indium
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024